Газовая хроматография

 

Хроматография – это метод разделения, обнаружения и определения веществ, основанный на различии их поведения в системе из двух несмешивающихся фаз - подвижной и неподвижной. Хроматографию используют для разделения сложных смесей. Хроматографический процесс заключается в перемещении подвижной фазы, содержащей компоненты разделяемой смеси, относительно неподвижной. Подвижной фазой может быть газ или жидкость, неподвижной фазой - твердое вещество или жидкость, адсорбированная на твердом веществе, называемом носителем. При движении подвижной фазы вдоль неподвижной компоненты смеси сорбируются на неподвижной фазе. Поэтому неподвижную фазу называют также сорбентом. Каждый компонент подвижной фазы сорбируется по-своему. Захваченные сорбентом молекулы могут переходить в подвижную фазу, продвигаться дальше и вновь сорбироваться. Чем сильнее сорбируется компонент, тем медленнее его продвижение вместе с подвижной фазой. Если компоненты смеси сорбируются неодинаково, при перемещении смеси вдоль сорбента происходит их пространственное разделение. Одни компоненты задерживаются, другие продвигаются дальше.

            При газовой хроматографии неподвижную фазу размещают в специальной колонке. Различают спиральные и капиллярные колонки. Вид спиральной колонки приведен далее.

 

Рис. Принцип работы хроматографической колонки

 

Эти колонки изготавливаются из трубки диаметром 2 - 6 мм и длиной до 20 м. Для обеспечения компактности оборудования трубки свернуты в форму спирали. Капиллярные колонки имеют диаметр 0,2 - 0,5 мм и длину до 10 см.

Подвижной фазой в газовой хроматографии является инертный газ, N2, H2, которые с постоянной скоростью прокачивается через хроматографическую колонку. Пробу объемом 0,01 - 50 мкл вводят в колонку шприцем или с помощью специального дозатора. При этом распределение концентрации С газов пробы и газа подвижной фазы по длине Х трубки колонки. Из графика видно, что на входе в хроматографическую колонку газовые компоненты исследуемой пробы объединены.

В приведенном на рисунке примере исследуемая газовая смесь состоит из слабо сорбируемого оксида углерода СО и имеющего большую сорбционную способность диоксида углерода СО2. Продвижение через сорбент колонки диоксида углерода будет замедленно. Поэтому произойдет пространственное разделение компонентов анализируемой смеси. Как видно из правого графика сначала на выходе колонки появится оксид углерода, а затем – СО2.

В общем случае концентрации выходящих из колонки компонентов можно измерять различными способами. Известны фотоионизационный, электроннозахватный детекторы, детектор по теплопроводности. Для анализа сложных смесей органических веществ широко применяют пламенный детектор. Он представляет собой водородную горелку на которую направлен поток газа с выхода хроматографической колонки. Поступление в горелку очередного компонента смеси вызывает вспышку пламени, которая преобразуется оптикоэлектронным преобразователем в электрический сигнал и в простейшем случае  фиксируется самопишущим прибором на бумажном носителе.

График зависимости выходного сигнала от времени состоит из ряда пиков. Местоположение пика на временной оси несет информацию о его принадлежности определенному компоненту анализируемой смеси. Концентрация этого компонента пропорциональна площади соответствующего пика.

            Для проведения газовой хроматографии используют специальные приборы - газовые хроматографы различных моделей. Схема, поясняющая принцип действия газового хроматографа, приведена ниже.  

Рис. Принцип действия газового хроматографа

 

В общем случае хроматограф содержит: баллон Б с газом-носителем (подвижная фаза), термостат с устройством ввода анализируемых проб УВ, термостат с хроматографической колонкой ХК, термостат с блоком хроматографических детекторов БД, электронный блок с регистрирующим устройством РУ.

При работе с хроматографами особое внимание следует уделять стабилизации температуры колонки и правильному подбору материала неподвижной фазы.

До недавнего времени хроматографы состояли из отдельных блоков. Работа с ними не была автоматизирована, требовала тщательности и высокой квалификации обслуживающего персонала. Современные хроматографы, как правило, оснащаются компьютерным устройством управления, имеют малые массу и габариты. Автономный носимый хроматограф ФГХ-1 является современным автоматизированным средством экспресс- определения концентраций вредных веществ в воздухе.

Рис. Внешний вид хроматографа ФГХ-1

 

Он представляет собой кейс, в котором размещены хроматограф, ноутбук, системы подачи газа-носителя (азот) и электропитания. В приборе используются следующие детекторы: фотоионизационный, электронозахватный, по теплопроводности. Он позволяет определять содержание в воздухе предельных и непредельных углеводородов, спиртов, простых и сложных эфиров, ароматических углеводородов, кетонов, нефтепродуктов, растворителей, хлорпроизводных углеводородов, окиси азота и др. в диапазоне от ПДК до промышленных выбросов. Результаты анализа, комментарии к ним и сами хроматограммы автоматически документируются в памяти компьютера. Для работы на хроматографе в автоматическом режиме не требуются специальные знания и опыт работы на хроматографах.

 


iTunes Gift Card (Russia) 6000 руб
iTunes Gift Card (Russia) 6000 руб


iTunes Gift Card (Россия) 700 рублей
iTunes Gift Card (Россия) 700 рублей


iTunes Gift Card (Russia) 1500 руб
iTunes Gift Card (Russia) 1500 руб