В начало

Условия существования живых организмов (Лекция)

ПЛАН ЛЕКЦИИ

1. Абиотические, биотические и антропогенные факторы среды

2. Адаптационные возможности живых систем. Гомеостаз

3. Лимитирующие факторы среды. Правило Либиха

1. Абиотические, биотические и антропогенные факторы среды

Природное окружение живого организма слагается из множества неорганических и органических компонентов, включая привносимые человеком. При этом некоторые из них могут быть необходимы организмам, другие не играют существенной роли в их жизни. Так, например, заяц, волк, лиса и любое другое животное в лесу находятся во взаимосвязи с огромным количеством элементов. Без таких, как воздух, вода, пища, определенная температура, - они обойтись не могут. Другие же, например, валун, ствол дерева, пень, кочка, канавка, - элементы среды, к которым они могут быть безразличны. Животные вступают с ними во временные (укрытие, переправа), но не обязательные взаимоотношения.

Важные для жизни организма компоненты окружающей среды, с которыми он неизбежно сталкивается, называются экологическими факторами.

Экологические факторы могут быть необходимы или вредны для живых существ, способствовать или препятствовать выживанию и размножению.

Условия существования - это совокупность экологических факторов, обуславливающих рост, развитие, выживание и воспроизводство организмов.

Все многообразие экологических факторов обычно подразделяют на три группы: абиотические, биотические и антропогенные.

Абиотические факторы - это совокупность важных для организмов свойств неживой природы. Эти факторы, в свою очередь, можно разделить на химические (состав атмосферы, воды, почвы) и физические (температура, давление, влажность, течения и т. п.). Разнообразие рельефа, геологических и климатических условий порождают и огромное разнообразие абиотических факторов.

Первостепенное значение из них имеют климатические (солнечный свет, температура, влажность); географические (продолжительность дня и ночи, рельеф местности); гидрологические (гр. hydor-вода) - течение, волнение, состав и свойства вод; эдафические (гр. edaphos- почва) - состав и свойства почв и др.

Все факторы могут влиять на организмы непосредственно или косвенно. Например, рельеф местности влияет на условия освещенности, влажность, ветер и микроклимат.

Биотические факторы - это совокупность воздействий жизнедеятельности одних организмов на другие. Для каждого организма все остальные - важные факторы среды обитания, они оказывают на него не меньшее действие, чем неживая природа. Эти факторы тоже очень разнообразны.

Все многообразие взаимоотношений между организмами можно разделить на два основных типа: антагонистические (гр. antagonizsma - борьба) и неантагонистические.

Антагонистические- это такие отношения, при которых организмы двух видов подавляют друг друга (- -) или один из них подавляет другой без ущерба для себя (+ -). Основные формы этого вида биотических отношений: хищничество, паразитизм и конкуренция.

Хищничество - форма взаимоотношений организмов разных трофических уровней, при которой один вид организмов живет за счет другого, поедая его (+ -).

Хищники могут специализироваться на одной жертве (рысь - заяц) или быть многояд- ными (волк). В любом биоценозе эволюционно сформировались механизмы, регулирующие численность и хищника, и жертвы. Неразумное уничтожение хищников часто приводит к снижению жизнеспособности их

 

Рис. Хищничество

 

Паразитизм (гр. parasitos - тунеядец] - межвидовые взаимоотношения, при которых один вид живет за счет другого (+ -), поселяясь внутри или на поверхности тела организма-хозяина. Паразитизм наиболее широко распространен среди растений и низших животных - вирусов, бактерий, грибов, простейших, червей и др. Паразиты делятся на эктопаразитов, живущих на поверхности тела (клещи, пиявки, блохи), и эндопаразитов, обитающих в теле хозяина (гельминты, бактерии, вирусы, простейшие).

Рис. Паразитизм

 

Конкуренция(лат. concurrentia - соперничество) - форма взаимоотношений, при которых организмы одного трофического уровня борются за пищу и другие условия существования, подавляя друг друга (- -). Конкуренция наглядно проявляется у растений. Деревья в лесу стремятся охватить корнями возможно большее пространство, чтобы получать воду и питательные вещества. Они также тянутся в высоту к свету, стремясь обогнать своих конкурентов. Сорные травы забивают другие растения. Много примеров из жизни животных. Обостренной конкуренцией объясняется, например, несовместимость в одном водоеме широкополого и узкопалого раков: побеждает обычно узкопалый рак, так как более плодовит.

Рис. Конкуренция

 

Чем больше сходства в требованиях двух видов к условиям жизни, тем сильнее конкуренция, которая может приводить к исчезновению одного из них. Тип взаимодействий конкретныхвидов может меняться в зависимости от условий или стадий жизненного цикла.

Антагонистические отношения проявляются сильнее на начальных стадиях развития сообщества. В процессе развития экосистем обнаруживается тенденция к замене отрицательных взаимодействий положительными, повышающими выживание видов.

Неантагонистические взаимоотношения теоретически можно выразить многими комбинациями: нейтральные (0 0), взаимовыгодные (+ +), односторонние (0 +) и др. Основные формы этих взаимодействий следующие: симбиоз, мутуализм и комменсализм.

Симбиоз (гр. symbiosis - сожительство) - это обоюдовыгодные, но не обязательные взаимоотношения разных видов организмов (+ +). Пример симбиоза - сожительство рака-отшельника и актинии: актиния передвигается, прикрепляясь к спине рака, а тот получает с помощью актинии более богатую пищу и защиту.

Рис. Симбиоз

 

Иногда термин «симбиоз» используют в более широком смысле - «жить вместе».

Мутуализм (лат. mutuus - взаимный) - взаимовыгодные и обязательные для роста и выживания отношения организмов разных видов (+ +). Лишайники - хороший пример положительных взаимоотношений водорослей и грибов. При распространении насекомыми пыльцы растений у обоих видов вырабатываются специфические приспособления: цвет и запах у растений, хоботок - у насекомых и др.

 

Рис. Мутуализм

 

Комменсализм (лат. commensa/is - сотрапезник) - взаимоотношения, при которых один из партнеров извлекает выгоду, а другому они безразличны (+ 0). Комменсализм часто наблюдается в море: почти в каждой раковине моллюска, в теле губки есть «незваные гости», использующие их как укрытия. Птицы и животные, питающиеся остатками пищи хищников, - примеры комменсалов.

Рис. Комменсализм

 

Иногда очень трудно провести грань между симбиозом и мутуализмом, между комменсализмом и паразитизмом и другими взаимодействиями. Однако четко наблюдается тенденция перехода по ходу эволюции от паразитизма к комменсализму и мутуализму, так как в условиях, когда лимитированы некоторые ресурсы, кооперация дает преимущества.

Ясно, что люди должны переходить к мутуализму с природой. Если этого не произойдет, то, подобно неадаптированному паразиту, человек погубит своего хозяина и тем самым погубит себя.

Несмотря на конкуренцию и другие типы антагонистических отношений, в природе многие виды могут спокойно уживаться. В таких случаях говорят, что каждый вид обладает собственной экологической нишей (фр. niche - гнездо). Термин был предложен в 1910 г. Р. Джонсоном.

Близкородственные организмы, имеющие сходные требования к среде обитания, не живут, как правило, в одних и тех же условиях. Если они и живут в одном месте, то либо используют разные ресурсы, либо имеют другие различия в функциях.

Например, разные виды дятлов. Хотя все они одинаково питаются насекомыми и гнездятся в дуплах деревьев, но имеют как бы разную специализацию. Большой пестрый дятел добывает пищу в стволах деревьев, средний пестрый - в крупных верхних ветвях, малый пестрый - в тонких веточках, зеленый дятел охотится на муравьев на земле, а трехпалый выискивает мертвые и обгоревшие стволы деревьев, т. е. разные виды дятлов имеют разные экологические ниши.

Экологическая ниша - это совокупность территориальных и функциональных характеристик среды обитания, соответствующих требованиям данного вида: пищи, условий размножения, отношений с конкурентами и т. д.

Некоторые авторы вместо термина «экологическая ниша» используют термины «местообитание» или «среда обитания». Последние включают лишь пространство обитания, а экологическая ниша, кроме того, определяет функцию, которую выполняет вид. П. Агесс (1982) приводит такие определения ниши и среды: среда - адрес, по которому проживает организм, а ниша – его профессия.

Рис. Мирное сосуществование разных организмов

Рис. Экологические ниши

 

 Антропогенные факторы - это совокупность различных воздействий человека на неживую и живую природу. По мере исторического развития человечества природа обогатилась качественно новыми явлениями. Только самим своим физическим существованием люди оказывают заметное влияние на среду обитания: в процессе дыхания они ежегодно выделяют в атмосферу 1*1012 кг СО2, а с пищей потребляют около 5*1015 кКал. В значительно большей степени на биосферу влияет производственная деятельность людей. В результате нее изменяются рельеф и состав земной поверхности, химический состав атмосферы, климат, происходит перераспределение пресной воды, исчезают естественные экосистемы и создаются искусственные агро- и техноэкосистемы, возделываются культурные растения, одомашниваются животные и т. д.

Воздействие человека может быть прямым и косвенным. Например, вырубка и раскорчевка леса оказывают не только прямое действие (уничтожение деревьев и кустарников), но и опосредованное - изменяются условия существования птиц и зверей. Подсчитано, что с 1600 г. человеком так или иначе уничтожено 162 вида птиц и свыше 100 видов млекопитающих. Но, с другой стороны, он создает новые сорта растений и породы животных, постоянно увеличивает их урожайность и продуктивность. Искусственное переселение растений и животных также оказывает большое влияние на жизнь экосистем. Так, кролики, завезенные в Австралию, размножились там настолько, что причинили огромный ущерб сельскому хозяйству.

Стремительная урбанизация (лат. urbanus- городской) - рост городов в последние полвека - изменила лик Земли сильнее, чем многие другие виды деятельности за всю историю человечества. Наиболее очевидное проявление антропогенного влияния на биосферу - загрязнение окружающей среды.

 

2. Адаптационные возможности живых систем. Гомеостаз

Различные организмы по-разному реагируют на одни и те же экологические факторы. Адаптация (лат. adaptaHo - приспособление) к существованию в различных условиях выработалась у организмов исторически.

Несмотря на большое разнообразие экологических факторов, в характере их воздействия и в ответных реакциях живых организмов можно выявить ряд общих закономерностей.

Эффект влияния факторов зависит не только от характера их действия (качества), но и от количественного значения, воспринимаемого организмами: высокая или низкая температура; степень освещенности, влажности; количество пищи и т. д. В процессе эволюции выработалась способность организмов адаптироваться к экологическим факторам в определенных количественных пределах. Уменьшение или увеличение значения фактора за этими пределами угнетает жизнедеятельность, а при достижении некоторого минимального или максимального уровня наступает гибель.

Зоны действия экологического фактора и теоретическая зависимость жизнедеятельности организма, популяции или сообщества от количественного значения фактора в общем виде показаны далее.

Рис. Зависимость жизнедеятельности от интенсивности экологического фактора

 

Количественный диапазон фактора, наиболее благоприятный для жизнедеятельности, называется, экологическим оптимумом (лат. optimus- наилучший). Значения фактора, лежащие в зоне угнетения, называются экологическим пессимумом (лат. pessimum - наихудший). Минимальное и максимальное значения фактора, при которых наступает гибель, называются соответственно экологическим минимумом и экологическим максимумом. Кривая, изображенная на рисунке, как правило, не является симметричной.

Любые виды организмов, популяций или сообществ приспособлены, например, к существованию в определенном интервале температур. В таблице далее представлен приблизительный температурный диапазон активной жизни на суше и в воде. Диапазон колебаний температур в воде меньше, чем на суше, поэтому выносливость водных организмов к ее колебаниям меньше, чем наземных.

 

Таблица. Температурный диапазон жизни на Земле, °С

Среда обитания

Минимум

Максимум

Амплитуда колебаний

Суша

- 70,0

+ 55,0

125,0

Моря

- 3,5

+ 36,0

39,5

Пресные воды

0,0

+ 93,0

93,0

 

Верхним пределом жизни, вероятно, являются температуры, при которых разрушаются ферменты и свертываются белки (50 - 60 °С). Однако отдельные организмы могут существовать при более высоких температурах. В горячих источниках Камчатки и Америки, например, были обнаружены водоросли при температуре 82 °С и более.

Нижний предел температуры, при котором возможна жизнь, около -70 °С, хотя часто кустарники в Якутии не вымерзают даже при такой температуре. В анабиозе (гр. anabiosis - выживание), т. е. в неактивном состоянии, некоторые организмы сохраняются при абсолютном нуле (-273 °С).

Свойство организмов адаптироваться к существованию в том или ином диапазоне экологического фактора называется экологической пластичностью.

Чем шире диапазон экологического фактора, в пределах которого данный организм может жить, тем больше его экологическая пластичность. По степени пластичности выделяют два типа организмов: стенобионтные (стеноэки) и эврибионтные (эвриэки).

Стенобионтные и эврибионтные организмы различаются диапазоном экологического фактора, в котором они могут жить.

Стеобионтные (гр. stenos - узкий, тесный), или узкоприспособленные, виды способны существовать лишь при небольших отклонениях фактора от оптимального значения.

Эврибионтные (гр. eurys - широкий) называются широкоприспособленные организмы, выдерживающие большую амплитуду колебаний экологического фактора.

Таким образом, стенобионты экологически непластичны, т. е. маловыносливы, а эврибионты экологически пластичны, т. е. более выносливы. К первым относятся, например, типичные обитатели морей, которые живут в условиях высокой солености (камбала), и типичные обитатели пресных вод (карась). Они обладают невысокой экологической пластичностью. А вот трехиглая колюшка, может жить как в пресных, так и в соленых водах, т. е. характеризуется высокой пластичностью.

Исторически, приспосабливаясь к экологическим факторам, животные, растения, микроорганизмы распределяются по различным средам, формируя все многообразие экосистем, образующих в итоге биосферу Земли.

Для живых систем используют термин гомеостатические механизмы, или гомеостаз (гр. homos - одинаковый, stasis - состояние), т. е. механизмы, поддерживающие стабильное, одинаковое состояние.

Концепция гомеостаза экосистемы в экологии была разработана Ф. Клементсом (1949).

Гомеостаз - это способность популяции или экосистемы поддерживать устойчивое динамическое равновесие в изменяющихся условиях среды. В основе гомеостаза лежит принцип обратной связи.

В сервомеханизмах и в отдельных организмах механический или анатомический регуляторы имеют специфическую «постоянную точку». Например, при регулировке температуры в помещении терморегулятор управляет печью. У теплокровных животных регуляция температуры тела осуществляется специальным центром в мозгу.

В экосистемах в результате взаимодействия круговорота веществ, потоков энергии и сигналов обратной связи от субсистем возникает саморегулирующийся гомеостаз без регуляции извне из «постоянной точки». В число управляющих механизмов на уровне экосистемы входят, например, такие субсистемы, как микробное население, регулирующее накопление и высвобождение биогенных элементов. Субсистема «хищник - жертва» (волки - зайцы) также регулирует плотность популяций и хищника, и жертвы. Действуют и многие другие механизмы. ,

В отличие от созданных человеком кибернетических устройств, управляющие функции экосистемы диффузны и находятся внутри ее, а не направлены извне.

Гомеостатические механизмы функционируют в определенных пределах, при превышении которых неограничиваемые положительные обратные связи могут приводить к гибели экосистемы. Так, повышение урожайности в сельском хозяйстве часто связывают с количеством вносимых удобрений. Если их вносить слишком много, то система гомеостаза выходит за предел действия отрицательной обратной связи, а в агроценозе начинаются необратимые разрушительные изменения. Например, увлечение удобрениями привело в итоге к истощению, эрозии и засолению многих хлопковых полей в Средней Азии.

Равновесие в экосистемах обеспечивается избыточностью организмов, выполняющих одинаковые функции.

 Например, если в сообществе имеется несколько видов растений, каждое из которых развивается в своем температурном диапазоне, то скорость фотосинтеза экосистемы в течение длительного времени может оставаться почти неизменной.

При возрастании стресса система может оказаться неспособной возвратиться на прежний уровень, хотя и остается управляемой. Для экосистем возможно не одно, а несколько состояний равновесия. После стрессовых воздействий они часто возвращаются в другое, новое, состояние равновесия.

Вспомним, что огромное количество СО2, поступающего в атмосферу в результате деятельности человека, поглощается буферной карбонатной системой океана и автотрофами:

 

СО2 + СаСО3 + Н2О= Са(НСО3)2

СО2 + Н2О = (СН2О)n + О2

 

Но по мере увеличения притока СО2 буферная емкость биосферы может оказаться недостаточной, и в атмосфере установится новое равновесие между СО2 и О2. В этом случае даже очень небольшие изменения могут иметь далеко идущие последствия. Должна происходить эволюционная подгонка, чтобы вновь появился надежный гомеостатический контроль.

 

3. Лимитирующие факторы среды. Правило Либиха

Представление о лимитирующих факторах факторы основывается на двух законах экологии. законе минимума и законе толерантности.

Закон минимума. В середине прошлого века немецкий химик Ю. Либих (1840), изучая влияние разнообразных питательных веществ на рост растений, обнаружил, что урожай зависит не от тех элементов питания, которые требуются в больших количествах и присутствуют в изобилии (например, СО2 и Н2О), а от тех, которые, хотя и нужны растению в меньших количествах, но практически отсутствуют в почве или недоступны (например, фосфор, цинк, бор). Эту закономерность Либих сформулировал так: «Рост растения зависит от того элемента питания, который присутствует в минимальном количестве». Позднее этот вывод стал известен как окон минимума Либиха и был распространен также и на многие другие экологические факторы. Ограничивать, или лимитировать развитие организмов могут и тепло, и свет, и вода, и кислород, и другие факторы, если их значение соответствует экологическому минимуму.

Закон минимума Либиха в общем виде можно сформулировать так: рост и развитие организмов зависят в первую очередь от тех факторов природной среды, значение которых приближается к экологическому минимуму.

Дальнейшие исследования показали, что закон минимума имеет два ограничения, которые следует учитывать при практическом применении.

Первое ограничение состоит в том, что закон Либиха строго применим лишь в условиях стационарного состояния системы. Например, в некотором водоеме рост водорослей ограничивается в естественных условиях недостатком фосфатов (фосфор - биогенный элемент, который, как отмечалось ранее, является труднодоступным в природных условиях). Соединения азота при этом содержатся в воде в избытке. Если в этот водоем начнут сбрасывать сточные воды с высоким содержанием минерального фосфора, то водоем может «зацвести». Этот процесс будет прогрессировать до тех пор, пока один из элементов не израсходуется до ограничительного минимума. Теперь это может быть азот, если фосфор поступает с постоянной скоростью. В переходный же момент (когда азота еще достаточно, а фосфора уже достаточно) эффекта минимума не наблюдается, т. е. ни один из этих элементов не влияет на рост водорослей.

Второе ограничение связано с взаимодействием нескольких факторов. Иногда организм способен заменить (хотя бы частично) дефицитный элемент другим, химически близким. Так, в местах, где много стронция, в раковинах моллюсков он может заменять кальций при недостатке последнего. Или, например, потребность в цинке у некоторых растений снижается, если они растут в тени. Следовательно, низкая концентрация цинка меньше будет лимитировать рост растений в тени, чем на ярком свету. В этих случаях лимитирующее действие даже недостаточного количества того или иного элемента может не проявляться.

Закон толерантности (лат. tolerantia - терпение) был открыт английским биологом В. Шелфордом (1913), который обратил внимание на то, что ограничивать развитие живых организмов могут не только те экологические факторы, значения которых минимальны, но и те, которые характеризуются экологическим максимумом. Избыток тепла, света, воды и даже питательных веществ может оказаться столь же губительным, как и их недостаток. Диапазон экологического фактора между минимумом и максимумом Шелфорд назвал пределом толерантности.

Позднее были проведены многочисленные исследования, которые позволили установить пределы толерантности, т. е. возможного существования, для многих растений и животных. Законы Ю. Либиха и В. Шелфорда помогли понять многие явления и распределение организмов в природе.

Закон толерантности В. Шелфорда в общем виде формулируется так: рост и развитие организмов зависят в первую очередь от тех факторов среды, значения которых приближаются к экологическому минимуму или экологическому максимуму.

Было установлено следующее:

- организмы с широким диапазоном толерантности ко всем факторам широко распространены в природе и часто бывают космополитами. Например, многие патогенные бактерии;

- организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий диапазон относительно другого. Например, люди более выносливы к отсутствию пищи, чем к отсутствию воды, т. е. предел толерантности относительно воды более узкий, чем относительно пищи;

- если условия по одному из экологических факторов становятся неоптимальными, то может измениться и предел толерантности по другим факторам. Например, при недостатке азота в почве злакам требуется гораздо больше воды;

- наблюдаемые в природе реальные пределы толерантности меньше, чем потенциальные возможности организма адаптироваться к данному фактору. Это объясняется тем, что в природе пользоваться оптимальными физическими условиями среды часто мешают биотические отношения (конкуренция, отсутствие опылителей, хищники) и другие взаимодействия факторов. Любой человек лучше реализует свои потенциальные возможности в благоприятных условиях (сборы спортсменов для специальных тренировок перед ответственными соревнованиями, например). Потенциальная экологическая пластичность организма, определенная в изолированных или лабораторных условиях, как правило, больше реализованных возможностей в естественных условиях. Соответственно различают потенциальную и реализованную экологические ниши;

-пределы толерантности у размножающихся особей и потомства меньше, чем у взрослых особей, т. е. самки в период размножения и их потомство менее выносливы к условиям жизни, чем взрослые организмы. Так, географическое распределение промысловых птиц чаще определяется влиянием климата на яйца и птенцов, а не на взрослых птиц. Забота о потомстве и бережное отношение к материнству продиктованы законами природы. К сожалению, иногда социальные «достижения» противоречат этим законам;

- экстремальные (стрессовые) значения одного из факторов ведут к снижению предела толерантности по другим факторам. Если в реку сбрасывается нагретая вода, то рыбы и другие организмы тратят почти всю свою энергию на преодоление этого стресса. Им не хватает энергии на добывание пищи, защиту от хищников, размножение, что приводит к постепенному вымиранию. Психологический стресс также может вызывать многие соматические (гр. soma - тело) заболевания не только у человека, но и у некоторых животных (например, у собак). При стрессовых значениях фактора адаптации к нему становятся все более и более «дорогостоящими».

Если значение хотя бы одного из экологических факторов приближается к минимуму или максимуму, существование и процветание организма, популяции или сообщества становится зависимым именно от этого, лимитирующего жизнедеятельность фактора.

Лимитирующим фактором называется любой экологический фактор, приближающийся к крайним значениям пределов толерантности или превышающий их. Такие сильно отклоняющиеся от оптимума факторб! приобретают первостепенное значение в жизни организмов и биологических систем. Именно они контролируют условия существования.

Ценность концепции лимитирующих факторов состоит в том, что она позволяет разобраться в сложных взаимосвязях в экосистемах К счастью, не все возможные экологические факторы регулируют взаимоотношения между средой, организмами и человеком и управляют ими в каждой конкретной ситуации. Приоритетными в тот или иной отрезок времени оказываются различные лимитирующие факторы. На этих факторах эколог и должен сосредоточить свое внимание при изучении экосистем и управлении ими. Например, содержание кислорода в наземных местообитаниях велико, и он настолько доступен, что практически никогда не служит лимитирующим фактором (за исключением больших высот и антропогенных систем). Кислород мало интересует экологов, занимающихся наземными экосистемами. А в воде он нередко является фактором, лимитирующим развитие живых организмов («заморы» рыб, например). Поэтому гидробиолог всегда измеряет содержание кислорода в воде, в отличие от ветеринара или орнитолога, хотя для наземных организмов кислород не менее важен, чем для водных.

Лимитирующие факторы определяют и географический ареал вида. Так, продвижение организмов на север лимитируется, как правило, недостатком тепла. Биотические факторы также часто ограничивают распространение тех или иных организмов. Например, завезенный из Средиземноморья в Калифорнию инжир не плодоносил там до тех пор, пока не догадались завезти туда и определенный вид осы - единственного опылителя этого растения. Выявление лимитирующих факторов очень важно во многих видах деятельности, особенно в сельском хозяйстве. Если целенаправленно влиять на лимитирующие условия, можно быстро и эффективно повышать урожайность растений и производительность животных. Так, при разведении пшеницы на кислых почвах никакие агрономические мероприятия не дадут эффекта, если не применять известкование, которое снизит ограничивающее действие кислот.

Знание лимитирующих факторов дает ключ к управлению экосистемам Однако в зависимости от периодов жизни организма и в разных ситуациях в качестве лимитирующих выступают различные факторы. Поэтому только умелое регулирование условий существования может дать эффективные результаты управления.

Примеры лимитирующих факторов. В качестве примеров лимитирующих факторов, позволяющих управлять природными и индустриальными системами, удобно рассмотреть пожары и антропогенный стресс.

Пожары как антропогенный фактор чаще оцениваются только негативно. Исследования в последние 50 лет показали, что естественные пожары могут являться как бы частью климата во многих наземных местообитаниях. Они влияют на эволюцию флоры и фауны. Биотические сообщества «научились» компенсировать этот фактор и адаптируются к нему, как к температуре или влажности. Пожар можно рассматривать и изучать как экологический фактор, наряду с температурой, осадками и почвой. При правильном использовании огонь может быть ценным экологическим инструментом. Некоторые племена регулярно выжигали леса для своих нужд еще задолго до того, как люди стали целенаправленно изменять окружающую среду. Пожар - очень важный фактор в том числе и потому, что человек может его контролировать в большей степени, чем другие лимитирующие факторы. Трудно найти участок земли, особенно в районах с засушливыми периодами, где бы не случился пожар хотя бы раз за 50 лет. Чаще всего причиной пожаров в природе служит удар молнии.

Пожары бывают различных типов и оставляют разные последствия.

Верховые, или «дикие», пожары обычно очень интенсивны и не поддаются сдерживанию. Они уничтожают всю растительность и разрушают всю органику почвы. Пожары такого типа оказывают лимитирующее действие почти на все организмы сообщества. Должно пройти много лет, пока участок вновь восстановится.

Низовые пожары совершенно иные. Они обладают избирательным действием: для одних организмов оказываются более лимитирующими, чем для других. Таким образом, низовые пожары способствуют развитию организмов с высокой толерантностью к их последствиям. Они могут быть естественными или специально организованными человеком. Например, плановое выжигание в лесу предпринимается с целью устранить конкуренцию для ценной породы болотной сосны со стороны лиственных деревьев. Болотная сосна, в отличие от лиственных пород, устойчива к огню, так как верхушечная почка ее сеянцев защищена пучком длинных плохо горящих иголок. При отсутствии пожаров поросль лиственных деревьев заглушает сосну, а также злаки и бобовые. Это приводит к угнетению куропаток и других мелких травоядных животных. Поэтому девственные сосновые леса с обильной дичью являются экосистемами «пожарного» типа, т. е. нуждающимися в периодических низовых пожарах. В данном случае пожар не ведет к потере питательных элементов почвой, не вредит муравьям, насекомым и мелким млекопитающим. Азотфиксирующим бобовым небольшой пожар даже полезен. Выжигание проводится во влажных условиях - вечером, чтобы ночью пожар был потушен росой, а узкий фронт огня было легко перешагнуть. Кроме того, небольшие низовые пожары дополняют действие бактерий по превращению отмерших остатков в минеральные питательные вещества, пригодные для нового поколения растений. С этой же целью весной и осенью часто сжигают опавшую листву. Плановое выжигание - пример управления природной экосистемой с помощью лимитирующего экологического фактора.

Решение вопроса о том, следует ли полностью исключить возможность пожаров или огонь надо использовать как фактор управления, должно целиком зависеть от того, какой тип сообщества желателен на этом участке. Американский эколог Г. Стоддард (1936) одним из первых выступил «в защиту» контролируемых плановых выжиганий для увеличения продукции ценной древесины и дичи еще в те времена, когда с точки зрения лесоводов любой пожар считался вредным. Тесная связь выгорания с составом трав играет также ключевую роль в поддержании удивительного разнообразия антилоп и поедающих их хищников в восточно- африканских саваннах. Положительно влияют пожары на многие злаковые, так как точки роста их и запасы энергии находятся под землей. После выгорания сухих надземных частей быстро возвращаются в почву элементы питания, и травы пышно вырастают.

Растения выработали специальные адаптации к пожарам. Толерантные к пожарам виды можно разделить на две группы. Первые вкладывают в подземные запасающие органы больше энергии, чем в органы размножения - незаметные цветы, мало семян. Эти виды быстро восстанавливаются после пожара. Вторые, напротив, дают многочисленные устойчивые семена. Эти растения гибнут в огне, но семена их готовы прорасти сразу после пожара.

Вопрос «жечь или не жечь», конечно, может смущать. По неосторожности человек нередко бывает причиной увеличения частоты «диких» пожаров. Борьба за пожарную безопасность в лесах и зонах отдыха - вторая сторона проблемы.

Частное лицо ни в коем случае не имеет права намеренно или случайно вызывать пожар в природе - это привилегия специально обученных людей, знакомых с правилами землепользования.

 


iTunes Gift Card (РОССИЯ) - 700 руб
iTunes Gift Card (РОССИЯ) - 700 руб


iTunes Gift Card (Russia) 300 рублей
iTunes Gift Card (Russia) 300 рублей


PSN 90 дней PlayStation Plus
PSN 90 дней PlayStation Plus